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Abstract. New studies of the T = 0 scaling theory of Gaussian and bimodal spin glasses, 
based on exact transfer matrix calculations and on Migdal-Kadanoff scaling, are performed. 
We focus on the area and length dependencies of the energy sensitivity to changes in the 
boundary conditions and on the role of vacancies in the bimodal model. We calculate the 
fractal dimensionality of domain walls in the 2D bimodal systems, valid for short length 
scales. 

1. Introduction 

Recently, much progress has been made in the studies of Ising spin glasses (ISG) with 
short range couplings using a T = 0 scaling technique [ 1-51. This approach is based 
on the observation that for all T < T, the behaviour of a system at long length scales 
should be governed by a T = 0 fixed point. The conclusion reached in this way has 
been that the 0 = 3  ISG has an equilibrium spin-glass-paramagnet transition at a 
non-zero T, whereas the corresponding Heisenberg system does not. These results have 
been subsequently confirmed by detailed Monte Carlo simulations [6-81. An Imry-Ma 
[ 9 ]  like analysis based on plausible assumptions [3, 10, 111 has led to several new 
predictions many of which contradict a mean-field analysis of the infinite range model 
[6]. Among these predictions is the absence of the spin-glass phase in a magnetic field 
and lack of an infinite number of valleys in the free energy landscape. 

The basic concept of the T=O scaling theory is that of a scaling stiffness or a 
scale-dependent coupling energy, SE( L ) .  This coupling is determined by studying the 
sensitivity to boundary conditions [ 1-41 of the ground-state energy of finite blocks of 
length L. S E ( L )  is a characteristic measure of that sensitivity. In the ordered phase at 
T=O 

For systems below the LCD, y is negative and a phase transition occurs at T=O. On 
the other hand, above the LCD y is positive and the transition occurs at a non-zero 
T,. Below T,, the free-energy sensitivity to boundary conditions is given by 

6F(  L )  = Y( T ) L y  
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where Y ( T )  vanishes at T, as a power-law [12] and the exponent y is governed by 
the T = 0 fixed point. In the paramagnetic phase S F (  L) should decay exponentially 
with the size of the system. 

For systems above the LCD the exponent y determines the power-law decay of 
nonlinear correlations in the ordered phase [3, 101 and the non-analytic dependence 
of the magnetization on the magnetic field [3]. For systems below the LCD the correlation 
length diverges as T +  0. The exponent of this divergence is given by Y = - l /y .  

In this paper we present the results of new studies of ISGS using the T = 0 scaling 
approach and the transfer matrix method to two- and three-dimensional systems. Our 
studies extend the studies by Bray and Moore [3] and McMillan [4] and are similar 
to our recent analysis of Potts spin glasses [13]. We consider systems in which the 
probability distribution of the exchange coupling is either Gaussian (GSG) or bimodal 
(BSG). In the latter case this distribution is given by P(J , )  = f [ S ( J i j  - I ) +  6(Ji,+ I)]. 
We also discuss systems with vacancies in which a specified fraction of the exchange 
bonds is missing. The presence of vacancies is expected to eliminate the dependence 
of physical quantities on the parity of L. We consider the scaling behaviour of blocks 
which are not necessarily cubic. In this way we determine exponents characterizing 
the length and area dependence of scaling variables like SE. The length, I ,  here is 
measured along the direction in which varying boundary conditions are applied. Our 
notation is explained in greater detail in section 3. Advantages of this geometry are 
marked in 3~ calculations where one can study only few small sizes of systems shaped 
in cubes. Furthermore, our studies enable us to understand the origin of the D- 
dependence of the scaling exponents. For instance, the exponent y is found to have 
a trivial D-dependent component which adds to a D-independent exponent characteriz- 
ing scaling with 1. It is interesting to point out that in the case of Potts spin glasses 
[13] the scaling with 1 is, in contrast, D-dependent. 

Our other focus is on the role of vacancies, particularly in the case of BSG. It should 
be pointed out that there has been, in the literature, some controversy regarding the 
nature of ordering of two-dimensional ( 2 ~ )  bimodal systems: is this system paramag- 
netic or critical (characterized by an infinite correlation length) at T = O ?  It is possible 
that an extreme degeneracy of spin configurations may lead to a state unbounded by 
energy barriers and thus paramagnetic. This in fact happens for a BSG on the Sierpinski 
gasket [ 141. In the case of regular lattices, however, the evidence seems contradictory. 
On the one hand, an extrapolation of the transfer matrix calculations of the partition 
function by Morgenstern and Binder [15] to T=O suggested that the 2~ BSG is 
paramagnetic in the ground state. Our own preliminary studies [16] (albeit with small 
statistics and without a sufficient quenching to the ground state) also pointed to the 
same conclusion. On the other hand, extensive Monte Carlo calculations by Young 
[17], McMillan [18], and Swendsen and Wang [19] as well as the T = 0 transfer matrix 
analysis of Bray and Moore [3], showed that the T=O state was characterized by an 
infinite correlation length. In this paper we demonstrate that this system appears to 
be spin glassy on short-length scales. On large-length scales, we suggest that, there is 
a crossover to a percolation situation in which zero effective block couplings span the 
system. This behaviour (naively suggestive of paramagnetism) is also seen in the simple 
Migdal-Kadanoff rescaling schemes which we discuss in section 2. Unfortunately, as 
discussed in section 4, this does not unequivocally settle the question of the nature of 
the T = 0 phase. 

In section 4 we present T = 0 transfer matrix results on the exponent y in I S G ~ .  In 
section 5 we discuss the scaling of the fraction of non-zero couplings in 213 BSG. In 
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section 6 we discuss the calculation of an effective fractal dimensionality of the domain 
wall interface for the bimodal model. 

2. Migdal-Kadanoff analysis 

The Hamiltonian for the ISG is given by 
N 

where (9) denotes a summation over nearest neighbours, the spin S, takes on values 
il, and the spins are located on the sites of a D-dimensional cubic lattice. 

As a guide it is useful first to map out the properties of an ISG by using the simplest 
renormalization group scaling scheme, that of Migdal and Kadanoff [20] (MK) .  In this 
scheme one determines the effective block coupling on larger and larger length scales 
by performing the following transformation at each scale. We first reduce b bonds, 
K, = J , / k T  ( j  = 1,. . . , b), in series into one effective bond K ( ,  by decimating out the 
spins in the middle which are connected by the bond in series. We then move the bD-' 
effective bonds in parallel to form a hypercubic lattice with a lattice constant which 
is b times larger and with the renormalized exchange coupling given by [3,21,22]t 

bD-l  

K ' =  K ( ,  (4Q 1 
i = l  

where 

with 

4. = 1 +2/[exp(Kj) - 11. ( 4 c )  
The renormalization procedure starts by generating a pool of, typically, 10 000 exchange 
couplings which describe the system on the microscopic level. The next step is to create 
a new equally sized pool of rescaled couplings by picking randomly b D  bonds for 
each new coupling and by transforming the bonds according to the recursion relation 
(4). The new couplings now form a starting pool in the second-stage rescaling, and 
so on. 

In the T=O limit (4) reduces to 

JI, = sign(J, . . . J b )  min()J,I, . . . , / Jb l )  ( 5 )  
provided that none of the couplings is equal to zero. In the case of bimodal distribution 
it may happen that half of the effective bonds K ( ,  in the parallel arrangement is exactly 
the negative of the other half resulting in a zero overall coupling K' .  In the next stage 
of the rescaling procedure this zero coupling produces a vanishing serial contribution 
K (,. 

At each length scale we characterize the pool of the couplings by their mean and 
dispersion, U. We study these quantities as a function of the number of rescaling stages, 
n. Both for Gaussian and bimodal couplings the mean stays equal to zero whereas the 

t The Migdal-Kadanoff method has been used previously by many other workers to study spin glasses. Our 
intention here is to summarize the known results and to add a few new results, e.g. for the situation with 
vacancies, to set the stage for the rest of the paper. 
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dispersion either grows or decreases, depending on dimensionality and on the choice 
of the length rescaling factor b. As in the discussion of 6E, the growth is taken as an 
indication of spin-glass order, an algebraic decay suggests glassy order only at T = 0, 
and an exponential decay indicates paramagnetic behaviour. 

Figures 1 and 2 show the flow of (+ for the GSG and BSGS. Consider first the case 
of D = 3.  For both models, cr increases algebraically and the presence of vacancies 

-4 y I 
1 1 8 1 ,  ! I S , ,  8 1  I , ,  , I 1  

n 
0 5 10 15 

Figure 1. Dependence of the dispersion of the distribution of exchange couplings on the 
number of iterations in the Migdal-Kadanoff scheme at T = 0 and for b = 2. Straight lines 
on this plot correspond to a power-law dependence on the size of the system. The 
microscopic level couplings are Gaussian with unit dispersion. The broken lines refer to 
systems with a vacancy content of 0.2. 

couplings at the microscopic level. 
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does not affect the slopes in any significant manner. The slopes on the U - n plane are 
all of order 0.18 which translates into the exponent y being equal to 0.18/ln b = 0.26. 
This agrees well with 

y,M, = 0.19 (6) 

obtained by Bray and Moore [3] by the transfer matrix method for the D = 3 systems. 
For the 2~ GSG we get y = -0.24, with and without vacancies, which differs by 0.5 from 
the D = 3 result and is close to 

calculated by Bray and Moore. 
In the 2~ bimodal case the situation is very different: the effective coupling in the 

MK procedure decreases exponentially fast with n. The decay appears to be slowed by 
the presence of vacancies. The transfer matrix approach, however, predicts a power-law 
decay. Further discrepancies occur when one compares the scaling behaviour of the 
fraction of couplings, p ,  which are non-zero. The MK method for the 2~ BSG yields an 
exponential decrease in p ,  similar to the behaviour of U seen in figure 2, whereas Bray 
and Moore get a power-law, p - L-', with 

?l = 0.2 (8) 
consistent with the existence of an ordered ground state. For the 3~ BSG the transfer 
matrix method finds no vanishing effective couplings but the simple rescaling suggests 
a slow (logarithmic or with an exponent 0.03) increase in p to 1. 

It is interesting to note that setting b = 3 yields essentially the same results as scaling 
with b = 2 ( y  = -0.275 and 0.245 in 2~ and 3~ respectively). The only difference appears 
in the behaviour of the 2~ BSG: the b = 3  M K  method suggests that y=O without 
vacancies and yields an exponential decay of SE with vacancies. 

We shall see in sections 3 and 4 that the exponential decays of S E ( L )  and of p ( L )  
in the 2~ BSG are also borne out by the transfer matrix method if one fixes the area 
and varies 1 and are not merely artefacts of the Migdal-Kadanoff method. These 
phenomena, on the other hand, are not seen when one considers small square samples, 
This suggests that the small length T = 0 spin-glass behaviour crosses over, at larger 
scales, to a situation where the zero couplings begin to percolate. 

3. Method of calculation 

In order to study the sensitivity to boundary conditions we consider blocks of A( 1 + 1) 
Ising spins. The parameter A is the transverse area of the sample and 1 its length in 
the direction in which differing boundary conditions are applied. For cubic samples 
1 = L and A = LD- ' .  

In the planar ( D  - 1) directions, periodic boundary conditions are applied. In the 
longitudinal direction, each of the spins in the first and last column ( D  = 2) or plane 
( D  = 3) are fixed randomly in one of the two states. This mimics the influence of 
neighbouring blocks on the finite block under study. The domain wall is created by 
turning the spin states on one boundary upside down with the spins on the other 
boundary held fixed. The difference in the ground-state energies is denoted by AE. It 
can be either positive or negative; we define SE 

SE = (IAEIL (9) 
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where (. . .>, denotes the configurational average over samples. Equally well we could 
consider the root mean square A E .  

An alternative way to characterize sensitivity to changes in the boundary conditions 
is to study SE when A is held fixed and 1 is varied or the other way around. In an 
ordered phase we should observe 

S E ( A ,  I )  = Iy f (A/ ID- ' ) .  (10) 

In the limit A >> I D - '  >> 1, one expects that the area dependence for SE, for frustrated 
systems [l] ,  simplifies to The reason is that, on average, half of the interface 
spins benefit from a change in the boundary conditions and the other half lose. The 
energy sensitivity to boundary conditions is a fluctuation effect, and thus of order All2. 
It has been demonstrated [23] that this remains a reasonable approximation for squares 
or cubes. However, one would expect that it would breakdown in the one-dimensional 
regime 1 << A << I D - '  with a possibly complicated crossover behaviour. From (lo),  

SE == A'I2jX (11) 
where 

x = y  - ( D  - 1)/2. 

The exponent x could still depend on D but, at least in the Ising scs but this does 
not seem to be the case, as we shall see in section 4. 

Our calculations were done using the transfer matrix method as used by Bray and 
Moore [3] ( T  = 0) and Morgenstern and Binder [24] and similar to our studies of the 
Potts spin glasses [13]. The details can be found in the above references. 

4. The T = 0 scaling exponent y 

Consider first the square and cubic samples of SGS. For each L x L sized system ( L  10) 
we took at least 10 000 samples into account in the configurational average. For the 
cubic samples we considered 4200 samples for L = 4 and 10 000 samples for smaller 
Ls. The transfer matrix results for the GSG with and without vacancies are shown in 
figure 3. The concentration of vacancies is denoted by c. In the 2~ case without vacancies 
we calculated only the L = 8, 9, and 10 data points and took the remaining ones from 
[3]. We see that the presence of vacancies does not affect the exponents. In  D = 3 we 
get 

(13a) 

(13b) 

y = 0.19 * 0.02 = Y B M )  

y = -0.3 1 * 0.02 

(GSG, D = 3). 

For D = 2 we combine the c = 0 and c = 0.2 results and get from the fit 

(GSG, D = 2) 

which is close to yBMZ given by (7 ) .  The errors bars have been obtained using the usual 
statistical measures and are based on the configurational averaging over the distribution 
of exchange interactions. Systematic errors arising due to small sizes considered are 
hard to estimate-this remark refers also to all of the data shown from now on. The 
physical conclusions obtained from (13) are qualitatively the same as obtained from 
the M K  studies. 

Consider now the BSG. Figure 4 shows the transfer matrix results obtained with 
statistics similar to the Gaussian case. The D =  3 results are consistent with those 
obtained for the 3~ GSG: the two systems, with and without vacancies, are in the same 
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Figure 3. L-dependence of SE for the 2D and 3D G S G S .  The results are obtained by the 
transfer matrix method. The data points denoted by circles (squares) refer to systems 
without (with) vacancies. 
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Figure 4. Same as in figure 3 but for the 2D and 3D bimodal spin glasses. One open circle 
next to the D = 2 data points belong actually to the D = 3 line. This is an example of a 
strong odd-even effect. 
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universality class since the discreteness in the microscopic exchange constants becomes 
irrelevant in scaling towards an infinite coupling. 

In the 3~ BSG c = 0 case, the line joining the L = 2 and L = 4 data points does not 
go through the L = 3  point. This is due to the ‘odd-even’ effect which, as noted by 
Bray and Moore [3], disappears when one introduces vacancies. One encounters this 
effect already in the case of uniform antiferromagnets. Suppose the periodic boundary 
conditions are imposed in the planes of such an antiferromagnet. If L is odd then the 
planes are always frustrated but this does not happen when L is even. Thus in order 
to calculate the exponent y one should consider odd and even L separately. A similar 
situation is found in BSGS with c = 0. Vacancies ‘relieve’ some of the planar frustration 
but it is still more reliable to distinguish between odd and even values of L. We shall 
encounter the odd-even effect in all quantities we study in this paper and adding 
vacancies always reduces it. 

In striking contrast to the M K  results, 6E of the 2~ BSG does not obey an exponential 
but a power-law behaviour with the exponent 

y = -0.25 * 0.03 (BSG, D = 2) (14) 

which is somewhat higher than y given by (13b). This suggests that the 2~ BSG and 
G S G ~  belong to different universality classes. The reason for the different behaviour is 
that in the Gaussian case strictly zero couplings have measure zero but in the 2~ 

bimodal case such couplings have a weight that increases with the size of the system. 
It should be noted that in the 2~ BSG case the value of y depends on a precise definition 
of 6E since the couplings are discrete and the usual scaling limit is not reached. 
Furthermore, y (as defined above) may not be simply related to the correlation length 
exponent v. 

We now turn to the discussion of the length and area dependencies of 6E. Figure 
5 shows the results pertaining to the 2~ and 3~ GSG systems without vacancies. In these 
studies we fixed A and varied 1 between 3 and 20. We used typically 10 000 samples 
except when A = 4 * 4 in which case we took 4200 samples into account. We find that 
the A’” dependence is obeyed very accurately so we focus on the 1-dependence which 
is governed by the 6E - 1” law. We obtain x = -0.81 10.02 for both 2~ and 3~ systems. 
Thus the corresponding exponents y are again given by (13) and we conclude that the 
difference in y between the two dimensionalities is merely due to the trivial area 
dependence. It should be noted, however, that in D = 1  G S G ,  when there is no 
frustration, it can be shown [3] that then x = -1. At sufficiently large I s ,  for a fixed A 
in 2~ and 3~ systems, the exponent x should switch to this I D  value due to a dimensional 
crossover. However, surprisingly, we saw only weak indications of this happening for 
lengths 1 not exceeding 30. 

The behaviour of the BSG is more puzzling. This case is shown in figures 6 and 7. 
The area dependence is again given by the square-root law for small 1. The length 
dependence in 2 ~ ,  however, starts off algebraically but it quickly curves into an 
exponential function. This behaviour seems to be inconsistent with the power-law 
obtained in square samples. Furthermore, the corresponding characteristic lengths in 
the exponential decay are not intrinsic but appear to depend on A-the larger the A, 
the longer the length. The presence of vacancies (figure 7 )  increases the lengths as well 
but the deviations from a possible power-law are clearly visible. The observed behaviour 
is suggestive of a complex dimensional crossover to a i~ situation. 
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Figure 5. The length dependence of SE divided by A"' for ZD and 3~ Gaussian spin 
glasses. The values of A are indicated in the figure. Smaller areas were also studied but 
the corresponding data points essentially lie on the scaling curve. 
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Figure 6.  Same as in figure 5 but for the bimodal systems without vacancies. The full line 
shows, for comparison, the best fit for the Gaussian systems (with c = 0). 

power-law. Only in the case of A = 2 * 2 and c = 0 are the deviations due to smallness 
of A seen. For A = 3 * 3 the odd-even effect causes a saturation of SE at a constant 
value (not shown) but again this behaviour disappears when vacancies are introduced. 
In the 2~ case the initial power-law could be consistent with the exponent x = -0.75, 
which yields y = -0.25. This incipient ordering, however, persists on short length scales 
only. 
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Figure 7. Same as in figure 6 but for the bimodal system with vacancies. 

The situation in the 3~ BSGS is strikingly different from that in two dimensions [25]. 
In the 3~ case there is a non-zero percolation threshold for vacancies to destroy the 
order. Stein et al [26] have studied ground-state configurations of BSGS in which a 
fraction x of nearest-neighbour couplings are antiferromagnetic and the rest are 
ferromagnetic. 

5. Scaling of the fraction of non-zero couplings 

Bray and Moore [3] have studied the probability, p ( L ) ,  of finding a non-zero SE in 
B S G ~  and found that it is 1 in D = 3 and in D = 2 there is a power law decrease at T = 0 

p ( L ) = L 7  (15) 

with 7 = 0.20 rt 0.02. This exponent describes the algebraic decay of the spin-spin 
correlations at T = O .  Morgenstern and Binder [24] obtained 0.4*0.1 for 7 and 
McMillan [ 181 got 0.28 * 0.04. The 2~ GSG has a unique ground state and hence 7 = 0 
in this case. 

Our own results, based on 10 000 square samples are consistent with the power-law 
obtained by Bray and Moore. We note, however, that, e.g., for L =  10 the probability 
of finding a zero coupling is equal to 0.784. In the scaling picture, we might consider 
building up a large system by putting together blocks of size 10 * 10. Since 78% of 
such blocks have a zero sensitivity to changes in boundary conditions, it seems 
reasonable to expect that those zero couplings will percolate leading to an overall zero 
sensitivity of the large system. Such a scenario might lead to deviations from the 
algebraic decay law for p (  L )  at sufficiently large L ( L  >> 10) even for square lattices of 
edge L. The complex crossover behaviour alluded to in the previous section could thus 
arise due to a one-dimensional crossover or due to a percolative crossover. 
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Even assuming that the above picture is realized and that for large enough L, 
p (  L) = 0, what might one conclude regarding the nature of the T = 0 phase? Is it 
paramagnetic or critical? While one may be tempted to connect the decoupling of 
block spins at long length scales to paramagnetism, such an assumption does not 
necessarily hold in all cases. An interesting counterexample is that of an antiferromag- 
netic 3-state Potts model on a square lattice. The highly degenerate ground state of 
this model leads to zero sensitivity to changes in boundary conditions. An exact 
calculation by Baxter [27] shows, however, that the T=O state is critical. A similar 
behaviour for the D = 2 BSG cannot be ruled out. 

6. Fractal dimensionality of interfaces 

Ising spin glasses have been found to be chaotic [lo, 11,20,28]t in the sense that the 
spin order is sensitive to a temperature change 6T at length scales L" of order 
(Y/cr6T)'/ ' ,  where Y and cr are T-dependent amplitudes associated with the interfacial 
free energy and entropy, respectively. 5 = ds/2 - y is the Lyapunov exponent charac- 
terizing the chaotic behaviour and d, is the fractal dimension of the interface. 

In order to determine ds one has to calculate the mean interface length and see 
how it scales with L. An easy way [28] to do this, but only in Gaussian systems, is to 
calculate 

I[ =lim A -0 [ ( ( A E  -AE(A))2)c]/A2 (16) 

where A E ( A )  denotes A E  in the presence of perturbation 

JV + Jg + A X ,  (17) 
with A << 1 and xij  drawn from a Gaussian pool of couplings with zero mean and unit 
dispersion. For a particular sample AE - AE(A) = ( i , ) ' / 2 A z ,  where il is the actual 
interface length and z is a normally distributed variable of unit dispersion. Thus 
(il), = 1,. The exponent ds is defined by 

I, = Lds. (18) 
Figure 8 shows the L-dependence of the effective interface, (16), as determined by 

the transfer matrix method for the 2~ GSG. The statistics are: 10 000 samples for L s  8, 
2800 for L = 9, and 2000 for L = 10. We get 

ds = 1.27 * 0.06 (GSG, D = 2) (19) 
which agrees with 1.26 obtained by Bray and Moore [28]. Since ds is larger than 2y, 
the Lyapunov exponent 5 is positive which corresponds to chaotic behaviour. 

The method of establishing the interface length, as outlined above, is valid only 
for the Gaussian systems. In the bimodal case we adopt the following procedure. We 
choose first one kind of boundary condition and find the ground-state energy in the 
presence of an infinitesimal noise in the couplings. We subtract this energy from the 
nearest integer value to extract the component which is entirely due to the noise. In 
the second stage of the procedure we invert spins on the boundary and repeat 
calculations of the ground-state energy in the presence of exactly the same noise and 

t Note that chaotic behaviour was first observed in a hierarchical Ising model with competing interactions 
by McKay el al. The origins of the chaos seem different in the two cases. 
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Figure 8. The scaling of the domain wall length for bimodal and Gaussian 2D square 
systems. 

we again extract the noise contribution. The difference of the noise contributions is 
proportional to the interface length. The procedure is then repeated over the ensemble 
of couplings (5000 samples) and random noises. The average root mean square 
difference in the noise contributions is divided by the dispersion of the noise and then 
plotted in figure 8 for the 2~ case. 

Figure 8 shows that the fractal dimensionality of the interface in 2~ bimodal systems 
is equal, or at least very close, to the one obtained for the GSG.  Again, without vacancies 

I I I I 
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A A = 0  
0 A = ?  
A A = 6  

1 I I L 

1 1.5 2 2.5 
In 1 

Figure 9. The length dependence of the interface length for the 2D Gaussian spin glasses 
without vacancies. The area dependence is linear. 
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the odd-even effect is quite pronounced but the presence of vacancies does not affect 
ds.  It should be remembered, however, that ds characterizes the behaviour of the 20 

BSG interface only on short-length scales. 
Figure 9 shows the 1-dependence of the interface for 2~ GSG. The area is fixed at 

values between 6 and 10. The data are consistent with the slope of 0.27 which suggests 
a linear A-dependence, This trivial A-dependence is consistent with the effective 
coupling SE scaling as the square root of A. 

The A-dependence in D = 2, combined with x being independent of D suggests 
that ds = 2.27 in the 3~ ISG. This in turn would imply that the Lyapunov exponent 5 
should be D-independent because both ds/2 and y change by 0.5 between D and 
D + 1. Such a D-independent 5 is also found in the Migdal-Kadanoff approximation 
since ds = D in that case. 

6. Concluding remarks 

In summary, we conclude that studying of the scaling stiffness and related quantities 
as functions independently of 1 and A brings in new insights and offers numerical 
advantages. Among these insights is the realization that the A''* law for the scaling 
of SE is connected to the linear A-dependence of the length of the fractal domain 
wall. It is possible that there exists a relationship between the exponents for the 
1-dependence of the two quantities. It remains an open question whether the physics 
of the 2~ bimodal spin glass is governed by a crossover between the spin-glass behaviour 
characterizing short length scales and the percolation of soft couplings or I D  behaviour 
at large length scales leading to paramagnetism. 
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